
SafeCert 2008

Deriving Safety Cases for the Formal Safety
Certification of Automatically Generated Code

Nurlida Basir 1

ECS, Southampton University
Southampton, SO17 1BJ, UK

Ewen Denney 2

USRA/RIACS, NASA Ames Research Center
Mountain View, CA 94035, USA

Bernd Fischer 3

ECS, Southampton University
Southampton, SO17 1BJ, UK

Abstract

We present an approach to systematically derive safety cases for automatically generated code from information collected
during a formal, Hoare-style safety certification of the code. This safety case makes explicit the formal and informal reason-
ing principles, and reveals the top-level assumptions and external dependencies that must be taken into account; however,
the evidence still comes from the formal safety proofs. It uses a generic goal-based argument that is instantiated with respect
to the certified safety property (i.e., safety claims) and the program. This will be combined with a complementary safety
case that argues the safety of the framework itself, in particular the correctness of the Hoare rules with respect to the safety
property and the trustworthiness of the certification system and its individual components.

Keywords: Automated code generation, Hoare logic, formal code certification, safety case, Goal Structuring Notation.

1 Introduction

Model-based design and automated code generation have become popular, but substantial
obstacles remain to their more widespread adoption in safety-critical domains: since code
generators are typically not qualified, there is no guarantee that their output is safe, and
consequently the generated code still needs to be fully tested and certified. Here, formal
methods such as formal software safety certification [3] can be used to demonstrate the

1 Email: nb206r@ecs.soton.ac.uk. Supported by the IPTA Academic Training Scheme of the Ministry of Higher
Education of the Malaysian Government.
2 Email: Ewen.W.Denney@nasa.gov. Supported by NASA under awards NCC2-1426 and NNA07BB97C.
3 Email: b.fischer@ecs.soton.ac.uk.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:nb206r@ecs.soton.ac.uk
mailto:Ewen.W.Denney@nasa.gov
mailto:b.fischer@ecs.soton.ac.uk

Basir and Denney and Fischer

required safety and integrity of the generated code, providing formal proofs as explicit
evidence or certificates for the assurance claims. However, several problems remain. For
automatically generated code it is particularly difficult to relate the proofs to the code;
moreover, the proofs are the final stage of a complex process and typically contain many
details. This complicates an intuitive understanding of the assurance claims provided by
the proofs. The complexity of the tools used can lead to unforeseen interactions and thus
causes additional concerns about the trustworthiness of the assurance claims. Hence, it is
important to make explicit which claims are actually proven, and on which assumptions
and reasoning principles both the claims and the proofs rest.

Here, we address this problem and present an approach currently under development
to systematically (and ultimately automatically) derive safety cases from information col-
lected during the formal certification phase, in particular the construction of the necessary
logical annotations. The purpose of these safety cases is to provide a “structured reading
guide” for the program and the safety proofs that will allow users to understand the safety
claims without having to understand all the technical details of the formal machinery. We
use a generic, multi-tiered safety case that is instantiated with respect to a given safety
property and program. Its upper tier simply instantiates the notion of safety and the formal
definitions for the given safety property while its two lower tiers argue the safety of the
program as governed by the property. The lower tiers are constructed individually to reflect
the program structure. This can be done systematically because their argument structure
directly follows the course the annotation construction takes through the program. Our ap-
proach is thus independent of the given safety property and program, and consequently also
independent of the underlying code generator. These three tiers together constitute a single
safety case that justifies the safety of the program. This paper discusses the structure of this
safety case. It will eventually be complemented by an additional safety case that justifies
the trustworthiness of the certification tool and framework itself. This will argue the safety
of the underlying safety logic (the language semantics and the safety policy) with respect
to the safety property (i.e., safety claims), as well as other components such as the theorem
prover.

We believe that the combined safety case (i.e., for the program being certified, as well
as the safety logic and the certification system) will clearly communicate the safety claims,
key safety requirements, and evidence required to trust the generated code. We expect that
this will alleviate distrust in code generators, which remains a problem for their use in
safety-critical applications.

This paper describes work still in progress. So far we have developed the overall struc-
ture of the generic program safety case and manually instantiated it for several examples,
using only information logged during annotation construction. We expect that this process
can be automated easily and that it will furthermore be straightforward to integrate with
existing tools to construct safety cases such as Adelard’s ASCE tool [1].

2 Formal Software Safety Certification

The purpose of software safety certification is to demonstrate that a program meets its
high-level requirements and remains safe in the presence of known hazards. Formal soft-
ware safety certification uses formal techniques based on program logics to show that the
software does not violate certain conditions during its execution. A safety property is an

2

Basir and Denney and Fischer

exact characterization of these conditions, based on the operational semantics of the pro-
gramming language. Each safety property thus describes a class of hazards. A safety policy
is a set of Hoare rules designed to show that safe programs satisfy the safety property of
interest. In our framework, the rules are formalized using the usual Hoare triples extended
with a “shadow” environment which records safety information related to the correspond-
ing program variables, and a safety predicate that is added to the computed verification
conditions (VCs) [3]. However, here we focus on the information provided by constructing
the annotations, and leave the details of constructing (i.e., applying the Hoare rules) and
proving (i.e., calling a theorem prover) the VCs to the complementary safety case.

Formal software safety certification follows the same technical approach as program
verification. A VC generator (VCG) traverses the code backwards and applies the Hoare
rules to produce VCs, starting with any requirements on output variables. If all VCs are
proven by an automated theorem prover (ATP), we can conclude that the program is safe
wrt. the safety property.

Our example below uses initialization safety but our framework can handle a variety
other safety properties including absence of out-of-bounds array accesses [3]; we expect
that other properties handled by proof-carrying code such as null pointer dereferences [7]
can be formalized easily. However, we are not restricted to showing exception freedom but
can also encode domain-specific properties such as matrix symmetry or coordinate frame
consistency (which requires significant proofs involving matrix algebra and functional cor-
rectness), whose violation will not immediately cause a run-time exception but still renders
the code unsafe.

3 Annotation Inference

In order to achieve a fully automated verification, a program logic requires annotations
(i.e., pre- and post-conditions, and loop invariants) at key program locations. The purpose
of annotation inference [5,6] is to construct these annotations automatically, by analyzing
the program structure. In our case, the annotations must formalize all pertinent information
that is necessary for the ATP to prove that all potentially unsafe locations are in fact safe.
If the program is safe, this information will be established or “defined” at some location
(which we thus call a definition) and maintained along all control-flow paths to all the po-
tentially unsafe locations, where it is used. The idea of the annotation inference algorithm,
therefore, is to “get the information from definitions to uses”, i.e., to find the endpoints of
all such generalized def -use-chains, to construct the formulae used in the annotations, and
to annotate the program along the paths.

The annotation inference algorithm itself is generic, and parametrized with respect to
a library of coding patterns that depend on the safety policy and the code generator. The
patterns characterize the notions of definitions and uses that are specific to the given safety
property. For example, for initialization safety, definitions correspond to variable initial-
izations while uses are statements which read a variable, whereas for array bounds safety,
definitions are the array declarations (where the shadow variables get their values from
the declared bounds), while uses are statements which access an array variable. The in-
ferred annotations are thus highly dependent on the actual program and the properties be-
ing proven. For example, for the initialization property, an invariant on a for-loop might
express that an array has been initialized up to the loop index (∀j ≤ i · A init[j]). The VCG

3

Basir and Denney and Fischer

will turn this annotation into three VCs, corresponding to establishing the invariant on loop
entry, preservation of the invariant by the loop body, and implication by the “exit form” of
the invariant (over the loop bounds) of the loop post-condition. For other safety properties,
the annotations can be seen as encapsulating the safety requirements directly. In the case
of the symmetry policy, a postcondition ∀i, j · M [i, j] = M [j, i] expresses the symmetry
of M . Again, this will be converted into VCs and checked by the prover. However, it is
the def -use-dependencies, rather than the annotations or the VCs, which govern the overall
structure of both the safety argument and the safety case.

4 Deriving Safety Cases via Annotation Inference

In our work, we consider each violation of the given safety property as a hazard. To demon-
strate that this hazard can not lead to a system failure, we construct a safety case that argues
that the safety property is in fact not violated and thus that the risk associated with this haz-
ard is controlled or mitigated. Safety cases are structured arguments, supported by a body
of evidence, that provide a convincing and valid case that a system is acceptably safe for
a given application in a given operating environment [2]. In our case, the high-level struc-
ture of this argument is constructed from information collected by the annotation inference
algorithm. However, the evidence still comes from the formal safety proofs. The safety
case only makes explicit the formal and informal reasoning principles, and reveals the top-
level assumptions and external dependencies that must be taken into account. It can thus
be thought of as “structured reading guide” for the safety proofs.

Here, we provide a simplified overview of this safety case. We concentrate on its
generic structure and describe its different tiers. We further concentrate on the program
itself, leaving the remaining elements (i.e., the formal framework, the certification system
and its individual components, and the safety proofs) of the combined safety case for future
work.

4.1 Tier I: Explaining the Safety Notion

Figure 1 shows the goal structure for the top tier of the safety case. It starts with the
top-level safety goal (i.e., the safety of the generated code with respect to the safety prop-
erty of interest) and shows how this is achieved by a formal argument based on the partial
correctness of the generated code. The argument stresses the meaning of the Hoare-style
framework, specialized to the given safety property. However, the argument structure re-
mains independent of the property. It uses contexts to explain the informal interpretation
of key notions like “safe” and “safety property” and constraints to outline limitations of the
approach, in particular the fact the certification works on an intermediate representation of
the source code and only shows a single property. Hyperlinks refer to additional evidence
in the form of documents containing, for example, the model from which the source code
has been generated.

The key strategy at this tier and its model (i.e., a Hoare-style partial correctness proof
using the dedicated proof rules of the init-before-use safety policy) as well as its limitations
(i.e., no termination proof) are made explicit. The strategy reduces showing the safety of
the whole program to showing the safety of all read accesses, which emerges as first sub-
goal. This is justified by the fact that the safety property is defined in terms of variable read

4

Basir and Denney and Fischer

(no termination)

n, n’ |= x safe iff x = init

Context: Goal: Context:

Context:

Context:

Model:

Justification:

Strategy:

Model:

Justification:

Context: Goal: Goal:

Constraint:

Generated by AutoFilter from

Constraint:
intermediate represenation only

the model quaternion_ds1

Certification works on

The code is safe to execute wrt. the safe = code does not violate
given safety property during execution

safety−relevant information for variables
"shadow variables" record

"init−before−use" safety property.

correctness wrt. init−before−use policy

are safe wrt. init−before−use

init

Semantic safety definition

safety policy defined in
terms of read accesses

Formalization of safety policy is
adequate

init

Argument based on partial

safety property = requirement to
be maintained continuously by program

init−before−use = variable or

before it is read

Constraint: focus on given safety
property only

partial correctness proof only

Hoare−style program
verification using specific proof rules

proof of correctness

array element is explicitly assigned value

all read accesses to all variables

ensures safety of execution

Fig. 1. Tier I of Derived Safety Case: Explaining the Safety Notion

individually

... ...

...

... ...

...

individual variables

... ...

access occurrences of xhatmin

Goal:

Strategy: Justification:

Goal:

Justification:

Goal:

Justification:Goal:

Goal:

Strategy:

Goal:Goal:

Assumption:

Goal:

Justification:

Assumption:

all read accesses to all variables

Complete list of variables

xinit is safe

Complete list of occurrences

xhatmin is safe at location #161

are safe wrt. init−before−use

Argument over each variable

xhatmin is safe r is safe

xhatmin is safe at location #205

init
Safety condition xhatmin (3,0)=init

holds at this location

Argument over all read

Safety property defined on

xhatmin is safe at location #294

Only read accesses can
violate safety property

Safety condition is derived
by instantiation of the safety predicate
over occurrence

Soundness and complete−
ness of safety policy

Fig. 2. Tier II of Derived Safety Case: Arguing over the Variables

accesses. The subgoal is further elaborated by a model of the semantic safety definition,
which exactly defines what is meant by “safe”, using the notion of shadow variables given
as context. The strategy’s second subgoal is to show that the safety policy adequately repre-
sents the safety property, which is also the foundation of the strategy’s original justification
(i.e., the claim that the proofs ensure the safe execution of the program). This subgoal is
not elaborated further in this safety case but leads to the complementary safety case for the
safety logic.

4.2 Tier II: Arguing over the Variables

The second tier reduces the safety of all variables in two steps, first to the safety of each
individual variable (justified by the fact that the safety property is defined on individual
variables) and then to the safety of the individual occurrences. Note that the number of
subgoals of both strategies (see Figure 2 for the goal structure) and the safety conditions
are program-specific. This information is provided by the annotation inference.

Both strategies are predicated on the assumption that they iterate over the complete list
of variables (resp. occurrences). Each individual occurrence then leads to a subgoal to show
that the computed safety condition is valid at the location of the variable’s occurrence. This

5

Basir and Denney and Fischer

of variable safety

Goal:

is proven

is proven

...

......
is proven is proven

Goal: Goal:

Goal:

Assumption:

Assumption: Goal:Goal:

Strategy: Goal:

Goal:Goal:Goal:

Goal:

Strategy:

Safety condition xhatmin (3,0)=init
holds at this location

init

Complete list of
VCs

Complete list of
paths

Strategy: Argument over establishment,
maintenance, and strength of var. safety

Argument over establishment

Model:
of assignments

Model:
assignment

MatrixSeriesxhatmin is de− xhatmin is de−

VC #04

Variable safety from all paths
implies safety condition

Variable safety is maintained on Variable safety is established on
all paths to this location all paths to this location

maintained on path #1
variable safety variable safety

maintained on path #4
Goal:
fined in lines 154−159

Goal:
is proven

VC #07 VC #14

VC #30Argument over all paths

VC #17

fined at line 288

Fig. 3. Tier III of Derived Safety Case: Arguing over the Paths

reduction to a formal proof obligation is justified by the soundness and completeness of the
safety policy; in addition, the specific form of the safety condition is also justified.

4.3 Tier III: Arguing over the Paths

The final tier (see Figure 3 for the goal structure) argues the safety of each individual vari-
able access, using a strategy based on establishing and maintaining appropriate invariants.
This directly reflects the course the annotation inference has taken through the code. The
first subgoal is thus to show that the variable safety is established on all paths leading to the
current location, using a formal argument over all definition locations. Here, the model for
the subgoal corresponds to the pattern that was applied during annotation inference to iden-
tify the definition. Each definition thus leads to a corresponding subgoal and then further
to any number of VCs, although here only a single VC emerges in both cases.

Goals that concern properties of the program (e.g., “xhatmin is defined”) are decom-
posed into subgoals that comprise program-independent tasks for the prover, i.e., VCs. The
validity of the construction of the VCs depends on the soundness of the rules of the VCG,
the simplifier, and the definition of the safety policy, while the correspondence to program
locations is based on on tracing information added by the VCG and retained during the
certification process. We have omitted these details from the safety case.

The second subgoal of the top-level strategy is to show that the established variable
safety is maintained along all paths. This proceeds accordingly. The final subgoal is then
to show that the variable safety implies the validity of the safety condition. This can again
lead to any number of VCs. If (and only if) all VCs can be shown to hold, then the safety
property holds for the entire program. The evidence for the VCs is provided by the formal
proofs; we plan to convert these into safety cases as well.

5 Conclusions

Software development standards for safety-critical domains such as DO-178B [8] are typ-
ically process-oriented and require that code generators are qualified for application, often
using an elaborate testing regime [9]. This time-consuming and expensive process slows
down generator development and application. We believe that product-oriented assurance

6

Basir and Denney and Fischer

approaches are a viable alternative. Here, assurance is not implied by the trust in the gen-
erator but follows from an explicitly constructed argument for the generated code. We
further believe that formal methods such as formal software safety certification can pro-
vide the highest level of assurance of the code’s safety and integrity, and have described
an approach whereby the inference of annotations drives both formal safety proofs and the
construction of a safety case.

However, the proofs by themselves are no panacea, and it is important to make explicit
which claims are actually proven, and on which assumptions and reasoning principles both
the claim and the proof rest. We believe that purely technical solutions such as proof
checking [11] fall short of the assurance provide by our safety case, since they do not take
into account the reasoning that goes into the construction of the VCs. In fact, we consider
the safety case only as a first step towards a fully-fledged software certificate management
system [4].

We have described work still in progress. So far, we have developed the overall structure
of the generic program safety case and instantiated it manually. The example shown here
uses code generated by our AutoFilter system [10], but the underlying annotation inference
algorithm has also been applied to code generated from Matlab models using Real-Time
Workshop, and we expect that the same derivation can be applied there as well. Current
work involves constructing a more comprehensive, combined safety case that covers the
components of the certification system itself (i.e., the formal framework, the inference sys-
tem and its individual components, and the safety proofs). There we rely on the fact that
trust in the complex components of the system can be reduced to trust in simpler compo-
nents. For example, the use of proof checking mitigates the risk of the automated theorem
prover.

References

[1] ASCE home page (2007), www.adelard.com/web/hnav/ASCE.

[2] Bishop, P. and R. Bloomfield, A methodology for safety case development, in: F. Redmill and T. Anderson, editors,
Industrial Perspectives of Safety-critical Systems: Proceedings of the Sixth Safety-critical Systems Symposium (1998),
pp. 194–203.

[3] Denney, E. and B. Fischer, Correctness of source-level safety policies, in: K. Araki, S. Gnesi and D. Mandrioli, editors,
Proc. FM 2003: Formal Methods, LNCS 2805 (2003), pp. 894–913.

[4] Denney, E. and B. Fischer, Software certification and software certificate management systems (position paper), in:
Proceedings of the ASE Workshop on Software Certificate Management Systems (SoftCeMent ’05), 2005, pp. 1–5.

[5] Denney, E. and B. Fischer, Annotation inference for safety certification of automatically generated code (extended
abstract), in: S. Uchitel and S. Easterbrook, editors, Proc. 21st ASE (2006), pp. 265–268.

[6] Denney, E. and B. Fischer, A generic annotation inference algorithm for the safety certification of automatically
generated code, in: S. Jarzabek, D. C. Schmidt and T. L. Veldhuizen, editors, Proc. Conf. Generative Programming
and Component Engineering (2006), pp. 121–130.

[7] Necula, G. C., Proof-carrying code, in: Proc. 24th POPL (1997), pp. 106–19.

[8] RTCA, “Software Considerations in Airborne Systems and Equipment Certification,” RTCA, 1992.

[9] Stürmer, I. and M. Conrad, Test suite design for code generation tools, in: Proceedings of 18th IEEE International
Conference on Automated Software Engineering (2003), pp. 286–290.

[10] Whittle, J. and J. Schumann, Automating the implementation of Kalman filter algorithms, ACM Transactions on
Mathematical Software 30 (2004), pp. 434–453.

[11] Wong, W., Validation of HOL proofs by proof checking, Formal Methods in System Design: An International Journal
14 (1999), pp. 193–212.

7

	Introduction
	Formal Software Safety Certification
	Annotation Inference
	Deriving Safety Cases via Annotation Inference
	Tier I: Explaining the Safety Notion
	Tier II: Arguing over the Variables
	Tier III: Arguing over the Paths

	Conclusions
	References

